
Lecture: Secure Function Evaluation

Hemanta K. Maji

Contents

1 Overview 1

2 Setting 1

3 Warmup: Encryption using One-time Pad 1

4 Semi-honest Secure Symmetric-Function Evaluation 2

5 Warmup: Example Protocols 4

6 Characterization of Securely Realizable Functions 4

7 Decomposable Functions 5

8 Impossibility Result for OR 5

9 Summary 7

1 Overview

Suppose Alice has private input x and Bob has private input y. They are interested in jointly
computing the function f(x, y). If this is the only requirement, then it is extremely easy to solve.
Alice sends her private input τ1 = x to Bob and Bob computes the function z = f(x, y) on their
behalf, and sends τ2 = z to Alice. There are some problems where |τ1| can, in fact, be extremely
small as compared to |τ1|, see for example the pointer chasing problem. Problems in communication
complexity deal with minimizing |τ1| such that Alice and Bob can perform this computation. We
are not concerned with this aspect of the problem. We permit |τ1τ2| = poly(|x|+ |y|).

We are interested in computing f(x, y) securely, i.e. we want Alice and Bob to learn at most
z = f(x, y). How do we make arguments of the form “Parties at most learn the value of z = f(x, y)”?
Towards this end, in this lecture, we shall learn about simulation-based security arguments

2 Setting

We are performing:

1. Secure Function Evaluation: We only consider securely evaluating functions, i.e. a entity that
obtains input from both parties and provides them with their respective outputs.

2. Symmetric Functions: Both parties receive the same output.

3. Deterministic Functions: The outcome z is a deterministic function of the inputs x and y.

What can our adversaries do:

1. Information-theoretic Setting: All parties have unbounded computational power.

2. Semi-honest Adversaries: Adversaries follow the protocol honest but, at a later time, become
curious. So, they revist their view attempting to learn additional information that they were
not permitted to learn.

3 Warmup: Encryption using One-time Pad

Suppose a party sends two messages m0 and m1 using the same random pad. We want to argue
that an eavesdropper “only learns” (m0 ⊕m1). This is a warmup example to introduce simulation
based security arguments.

In the Ideal World, the “Encryption Functionality” takes as inputm0 andm1 from Alice (the sender)
and delivers them to Bob (the receiver). We construct a simulator in this ideal world who obtains
an appropriate information about (m0,m1) from the ideal functionality and simulates the view for
the eavesdropper.

1

In the Real World, Alice sends two encryptions of the same message using the shared key k ∼ U
and sends the ciphertexts (c0, c1) := (m0 ⊕ k,m1 ⊕ k) to Bob. The eavesdropper gets to see the
messages (c0, c1).

The task of the simulator is to ensure that the eavesdropper cannot tell whether it is interacting
with the simulator in the Ideal World or listening to the actual transcripts generated in the Real
World.

The simulation strategy is as follows. The simulator asks the Ideal Functionality for δ = (m0⊕m1).
Given this information, it outputs (c0, c1) ∼ (U, δ ⊕ U).1

Now, we need to argue that the eavesdropper cannot distinguish the simulated view from the real
view. This follows from the following argument:

(m0 ⊕ U,m1 ⊕ U) ≡ (U, (m0 ⊕m1)⊕ U) ≡ (U, δ ⊕ U)

The leftmost view is the real view, and the rightmost view is the simulated view, and they are
identical distributions. Therefore, we have shown that the eavesdropper can find out at most
m0 ⊕m1.

A Note. The simulator could have even asked for (m0,m1) from the ideal functionality. In which
case, it could again have simulated the views of the adversary successfully. This argument would
have shown that the eavesdropper learns at most (m0,m1). This is also true!

But this is wasteful in the following sense. We know that the eavesdropper can find out m0 ⊕m1,
and this conveys significantly less information as compared to (m0,m1). So, our aim as a simulator
designer was to use the least amount of information to simulate the view of the eavesdropper.

4 Semi-honest Secure Symmetric-Function Evaluation

The Real World Experiment. In the real world version of this game, we have the following
participants:

1. Alice: Left Party

2. Bob: Right Party

3. Environment (Z): An external coordinating adversary.

The environment Z decides whether to corrupt a party or not. If it decides to corrupt a party, then
it decides which party to corrupt. The environment decides the private input x of Alice and the
private input y of Bob. Alice and Bob execute the protocol Π honestly. All parties return their

1 Recall that the same variable used twice represents the sample same sample drawn according to the distribution.
So, a sample from the distribution (U, δ ⊕ U) is of the form (u, δ + u), where u ∼ U . A sample from the distribution
(U, δ ⊕ U ′), on the other hand, would be of the form (u, δ ⊕ u′), where u and u′ are independent samples drawn
according to the uniform distribution.

2

respective output of the protocol to the environment. The corrupt party returns its complete view
to the environment.

So, if the environment corrupts no party, then its view is (x, zA, y, zB), where zA and zB are outputs
of Alice and Bob respectively in the real protocol. The distribution of the view of the environment,
in this case, is V(real)

Z := (x, ZA, y, ZB). If the environment decides to corrupt Alice, then its view
is (x, VA, y, zB). The distribution of the environment’s view is V(real)

Z := (x,VA, y, ZB). Similarly, if
the environment decides to corrupt Bob, then the distribution of its view is V(real)

Z := (x, ZA, y,VB).

The Ideal World Experiment. In the ideal world version of this game, we have the following
participants:

1. Alice: Left Party

2. Bob: Right Party

3. Environment (Z): And external coordinate adversary

4. Ideal Functionality (Ff): A functionality that takes input x from Alice and y from Bob and
outputs z = f(x, y) to both parties.

The environment remains identical to the environment in the real world. Honest parties reply back
with the output they receive. If the environment does not corrupt any party, then its view is
V(ideal)
Z := (x, z, y, z).

If the environment decides to corrupt Alice, then we get to design a simulator SimA that takes over
the control of Alice in the ideal world. It takes input x from the environment and forwards x to the
external functionality Ff and receives the output z. Next, the simulator SimA prepares a view VA
based on its view, i.e. (x, z). Therefore, we can say that VA ∼ SimA(x, z). Now, the distribution of
the view of the environment is V(ideal)

Z := (x, SimA(x, z), y, z).

Similarly, if the environment decides to corrupt Bob, then we get to design a simulator SimB that
takes over the control of Bob in the ideal world. It takes input y from A and forwards y to Ff , and
receives z. Next, it outputs a sample view according to the distribution SimB(y, z). The view of Z,
in this case, is V(ideal)

Z := (x, z, y, SimB(y, z)).

Proving Security. To prove the security of a protocol, we need to show that there exists (SimA, SimB)
such that for all Z, the following holds:

SD
(
V(real)
Z ,V(ideal)

Z

)
6 ε

Then, we say that the protocol has ε simulation error or, equivalently, it is (1− ε) secure. If ε = 0,
then we say that the protocol is perfectly secure. We emphasize that the simulators (SimA, SimB)
depend on the protocol description, but not on Z because it is quantified after the instantiation of
(SimA,SimB). Therefore, intuitively, even after we publish the simulators as a proof of security of
the protocol, no environment can break its security.

3

Observe that we need not make any ad hoc enforcement of correct evaluation of the output. Correct
evaluation follows as a special case of simulation-based security requirement when the environment
does not corrupt any party. Because, security, in that case, implies that SD ((x, ZA, y, ZB), (x, z, y, z)) 6
ε. Therefore, SD ((ZA, ZB), (z, z)) 6 ε, i.e. they agree with the correct output with probability ε.

5 Warmup: Example Protocols

1. XOR: The function is defined as f(x, y) := x⊕ y, where x ∈ {0, 1} and y ∈ {0, 1}.
Protocol: Alice sends her bit τ1 = x to Bob and Bob replies back with his bit τ2 = y. Alice
outputs zA := τ1 ⊕ τ2. Bob output zB := τ1 ⊕ τ2.
Security Proof: When no party is corrupt it is easy to see that this protocol has simulation
error ε = 0. When Alice is corrupt, SimA(x, z) computes the transcript (τ1 = x, τ2 = x ⊕ z)
and sends the view VA to Z. The simulation error, in this case, is 0 as well. When Bob is
corrupt, SimB(y, z) computes the transcript (τ1 = z ⊕ x, τ2 = y) and sends the view VB to Z.
The simulation error, in this case, is 0 as well.

2. MAX: The function is defined as f(x, y) := max{x, y}, where x ∈ {0, 2} and y ∈ {1, 3}.
Protocol: If Bob has input y = 3, then he sets τ1 = 1 else he sends τ1 = 0. If τ1 = 0 then Alice
sends τ2 = 0, if x = 0; otherwise it sends τ2 = 1 (when x = 2. If τ0 = 1, then Alice does not
reply with a message. To compute local output, Alice does the following: If (τ0, τ1) = (0, 0)
then she sets zA = 1, if (τ0, τ1) = (0, 1) then she sets zA = 2, and if τ0 = 1 then she sets
zA = 3. Similarly, Bob also sets his local input zB using the identical algorithm.

Security Proof: When no party is corrupt the protocol is always correct for every input pair
(x, y) and, hence, it has simulation error ε = 0. When Alice is corrupted, the simulator
SimA(x, z) does the following. If z = 1 then output (τ1, τ2) = (0, 0), if z = 2 then output
(τ1, τ2) = (0, 1) and if z = 3 then output τ0 = 1. It can be shown that this is perfectly secure.
Simulator for the case of corrupt Bob follows the identical strategy. This establishes that the
protocol is perfectly correct.

Question. Can we securely compute OR, i.e. the function f(x, y) = x ∨ y, where x, y ∈ {0, 1}?

6 Characterization of Securely Realizable Functions

Theorem 1 ([Kus89, Bea89, MPR09, KMQR09]). A secure (deterministic secure) function eval-
uation f has a semi-honest secure protocol in the information-theoretic setting if and only if f is
decomposable.

In Section 7, we shall define decomposable functions and then show one side of the proof that
decomposable functions have semi-honest secure protocols. In Section 8, we shall show that a
special types of un-decomposable functions, namely functions with an OR-minor, cannot be securely
computed. For the full proof of this theorem refer to Appendix C of the full version of [MPR09].

4

7 Decomposable Functions

The concept of decomposable functions was defined by [Kus89, Bea89]. It is recursively defined using
the concepts of valid X-cut and valid Y-cut.

Definition 1 (Valid X-Cut). A function f : X × Y → Z has a valid X-cut if there exists a set
X ′ ⊂ X∗ such that, for all y ∈ Y , x′ ∈ X ′ and x′′ ∈ X \X ′, we have f(x′, y) 6= f(x′′, y).

Analogously, we can define the concept of valid Y-cut.

Definition 2 (Decomposable Function). A function f : X × Y → Z is decomposable if:

1. The function f is a constant function, or

2. There exists a valid X-cut defined by (X ′, X \ X ′) and the restricted functions f |X′×Y and
f |X\X′×Y are both decomposable, or

3. There exists a valid Y-cut defined by (Y ′, Y \ Y ′) and the restricted functions f |X×Y ′ and
f |X×Y \Y ′ are both decomposable.

Note that the functions XOR and MAX defined above are both decomposable. The function XOR
has two different witness to its decomposability and the function MAX has a unique witness to
its decomposability. But the function OR is not decomposable. In fact, any function f that has
x, x′ ∈ X and y, y′ ∈ Y such that f(x, y) = f(x, y′) = f(x′, y) 6= f(x′, y′) is said to have an
OR-minor and is not decomposable.

Question. Are there functions that are non-decomposable but have no OR-minor? Think about
whether they can exist for |Z| = 2, 3, 4, 5,

Note that if f is a decomposable function then it has a tree of decomposition, i.e. the witness of
decomposition. One can easily show that traversing the tree is a secure protocol for the function
f . Prove, inductively, that this gives a secure protocol. Hint: Use inspiration from the two secure
protocols written in Section 5.

Question. If a function f has a unique witness for decomposition, then can you argue that every
secure protocol for f , in essence, is isomorphic to this unique decomposition witness?

8 Impossibility Result for OR

There cannot be a secure protocol for any function f with an OR-minor. Otherwise, we can use
the restriction of the function f to x, x′ ∈ X and y, y′ ∈ Y that witness the OR-minor and use it
to securely compute OR. In this section, we shall show that there cannot exist any secure protocol
for OR. This gives a contradiction; so, f cannot have a secure protocol to begin with.

5

Some mathematical notation: We represent the set {1, . . . , n} by [n]. Suppose there exists a secure
protocol for OR with simulation error ε. Then we shall show that ε is at least a constant. To show
this, we begin by proving some properties of views generated during protocol execution.

Claim 1 (Rectangle Rule for Transcripts). Given a transcript τ , for all x, x′ ∈ X and y, y′ ∈ Y ,
we have:

Pr[τ |x, y] · Pr[τ |x′, y′] = Pr[τ |x, y′] · Pr[τ |x′, y]

Proof. Let τ = τ1· · · τn (assume that n is even without loss of generality). Using Bayes’ rule and
Markov-chain property of views, respectively, we can write:

Pr[τ |x, y] =
∏
i∈[n]

Pr
[
τi|x, y, τ[i−1]

]

=

 ∏
i∈[n]

i is odd

Pr
[
τi|x, τ[i−1]

]×
 ∏

i∈[n]
i is even

Pr
[
τi|y, τ[i−1]

] = α(τ, x) · β(τ, y)

Now, we can write:

Pr[τ |x, y] · Pr[τ |x′, y′] = α(τ, x)β(τ, y) · α(τ, x′)β(τ, y′)

= α(τ, x)β(τ, y′) · α(τ, x′)β(τ, y)

= Pr[τ |x, y′] · Pr[τ |x′, y]

Claim 2 (Secure Views). Let Π be a secure protocol for a function f with simulation error ε. If
f(x, y) = f(x, y′), then the transcript distributions (T |x, y) and (T |x, y′) satisfy:

SD
(
(T |x, y), (T |x, y′)

)
6 2ε

Proof. Consider Z that corrupts Alice and sends x to her and y to Bob. The distribution of view
of this environment in the real world is V(real)

Z = (x,VA, y, z). The distribution of view of this
environment in the ideal world is V(ideal)

Z = (x, SimA(x, z), y, z). By security we have:

SD
(
V(real)
Z ,V(ideal)

Z

)
6 ε

=⇒ SD ((T |x, y), TA(x, z)) 6 ε

Here, TA(x, z) is the marginal simulated transcript distribution in the distribution SimA(x, z).

Now consider a new environment Z that is identical as the above mentioned environment except
that it sends y′ to Bob. Analogous to the above argument, we get SD ((T |x, y′), TA(x, z)) 6 ε.

By triangle inequality, we get: SD ((T |x, y), (T |x, y′)) 6 2ε.

Claim 3 (Rectangle Rule Closeness). Let A, B, C, D be four distributions such that: SD (A,B) 6 δ,
and SD (A,C) 6 δ. Further, the four distributions satisfy the rectangle-rule, that is, AiDi = BiCi,
where Ai, Bi, Ci and Di is the probability of obtaining the sample i according to the distributions
A,B,C and D, respectively. Then we have: SD (A,D) 6 2δ.

6

Proof. Try solving this puzzle yourself! In fact something tighter can be proven. Conjecture and
prove the tighter bound!

By Claim 2, we have: SD ((T |1, 1), (T |1, 0)) 6 2ε and SD ((T |1, 1), (T |0, 1)) 6 2ε. Since transcript
distribution follows the rentable rule (by Claim 1), we have: SD ((T |1, 1), (T |0, 0)) 6 4ε, by Claim 3.

Note that we have the following Markov chain: (T |x)→ (VA|x)→ (ZA|x). Therefore, we get:

SD ((ZA, ZB|0, 0), (ZA, ZB|1, 1)) 6 4ε (1)

By correctness of the protocol, we have Pr[ZA = ZB = f(x, y)|x, y] > 1 − ε. So, we get Pr[ZA =
ZB = 0|0, 0] > 1− ε and Pr[ZA = ZB = 1|1, 1] > 1− ε ⇐⇒ Pr[ZA = ZB = 0|1, 1] 6 ε. Therefore,

SD ((ZA, ZB|0, 0), (ZA, ZB|1, 1)) > 1− 2ε (2)

From Equation 1 and Equation 2, it must be the case that 4ε > 1− 2ε ⇐⇒ ε > 1/6. This proves
the following theorem:

Theorem 2. If Π is a semi-honest secure protocol for OR with simulation error ε, then ε > 1/6.

Question. Can you make this bound tighter? Can you construct a protocol for OR with simulation
error matching this bound?

9 Summary

In this lecture, we saw that deterministic symmetric functions are one of the following three types:

1. Decomposable: These functions can be semi-honest securely realized [Kus89, Bea89, MPR09,
KMQR09].

2. Non-Decomposable: These functions cannot be semi-honest securely realized.

(a) Has OR-minor: These functions are the hardest functions to realize. If you are given a
trusted box that securely implements a function with an OR-minor, then you can securely
implement any other function. In this sense, similar to the terminology in computational
complexity theory, they are called complete functions [Kil91].

(b) Does not have an OR-minor: These functions are of intermediate complexity, neither
securely realizable nor complete.

In the context of symmetric randomized secure function evaluation, very less is known. The charac-
terization of the complete functions was provided by [Kil00]. But the characterization of functions
that can be securely realized in the semi-honest setting is an open problem.

7

References

[Bea89] Donald Beaver. Perfect privacy for two-party protocols. In Joan Feigenbaum and
Michael Merritt, editors, Proceedings of DIMACS Workshop on Distributed Computing
and Cryptography, volume 2, pages 65–77. American Mathematical Society, 1989.

[Kil91] Joe Kilian. A general completeness theorem for two-party games. In 23rd Annual ACM
Symposium on Theory of Computing, pages 553–560, New Orleans, Louisiana, USA,
May 6–8, 1991. ACM Press.

[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation.
In 32nd Annual ACM Symposium on Theory of Computing, pages 316–324, Portland,
Oregon, USA, May 21–23, 2000. ACM Press.

[KMQR09] Robin Künzler, Jörn Müller-Quade, and Dominik Raub. Secure computability of func-
tions in the IT setting with dishonest majority and applications to long-term security.
In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, vol-
ume 5444 of Lecture Notes in Computer Science, pages 238–255. Springer, Heidelberg,
Germany, March 15–17, 2009.

[Kus89] Eyal Kushilevitz. Privacy and communication complexity. In 30th Annual Symposium
on Foundations of Computer Science, pages 416–421, Research Triangle Park, North
Carolina, October 30 – November 1, 1989. IEEE Computer Society Press.

[MPR09] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of multi-party
computation problems: The case of 2-party symmetric secure function evaluation. In
Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume
5444 of Lecture Notes in Computer Science, pages 256–273. Springer, Heidelberg, Ger-
many, March 15–17, 2009.

8

	Overview
	Setting
	Warmup: Encryption using One-time Pad
	Semi-honest Secure Symmetric-Function Evaluation
	Warmup: Example Protocols
	Characterization of Securely Realizable Functions
	Decomposable Functions
	Impossibility Result for OR
	Summary

